6 Ensaios de Resistência

Com o intuito de obter a influência da sucção na resistência ao cisalhamento do solo não saturado, foram realizados ensaios de cisalhamento direto com sucção controlada e convencional, no material considerado menos intemperizado. Neste capítulo serão apresentados esses resultados juntamente com sua análise.

6.1 Ensaios de cisalhamento direto convencional

Neste item estão apresentados e analisados os resultados obtidos dos ensaios de cisalhamento direto convencional, realizados na EEUFMG, como descrito na seção 4.3.2. A tabela abaixo apresenta os índices físicos dos corpos de prova no início, após o adensamento e após o cisalhamento, em cada ensaio executado.

Ensaio	Tensão		Índices fí	sicos in	Após o adensamento		Final		
Elisaio	(kPa)	γ _n (kN/m³)	γ _d (kN/m³)	w (%)	е	S (%)	е	∆e/(1+e₀)	w (%)
CD01	50	17,01	13,56	25,47	1,004	70,25	0,902	0,052	37,44
CD02	100	17,30	13,81	25,97	0,962	74,28	0,843	0,063	40,31
CD03	200	17,92	14,21	26,10	0,912	79,24	0,736	0,092	33,92

	,									
T I I A 4	1 12	<i>er</i> •				<u> </u>				
	Indiana	t101000		<u></u>	adanaamaata		AA 444	in norna	. do	nraia
						PILIA	THE CAL			I I I V A
	III UIUUUU	1101000	IIIIOIUIO.	u bbb b	addingarnerite					DIOVU.

Na Figura 6.1, estão apresentadas as curvas de tensão cisalhante *versus* deslocamento horizontal (τ *vs.* δ h) e de deslocamento vertical *versus* deslocamento horizontal (δ *v vs.* δ h), obtidas dos ensaios de cisalhamento direto convencional. Notou-se que, nesses ensaios, os corpos de prova comprimiram, portanto os valores positivos da variação na altura correspondem à compressão. Com os resultados obtidos dessas curvas, pôde-se obter a envoltória de resistência para as amostras submersas, apresentada no capítulo 7.

Figura 6.1 – Ensaio de cisalhamento convencional: curvas tensão-deslocamento.

As curvas do gráfico τ *vs*. δ h apresentaram um pequeno pico, tendendo a um valor constante à medida que se aumentava o deslocamento horizontal. Enquanto ocorria o deslocamento, a altura do corpo de prova diminuía como pode ser observado nas curvas do gráfico δ v *vs*. δ h.

6.2 Ensaios de cisalhamento direto com sucção controlada

Nesse item estão apresentados os resultados de ensaios de cisalhamento direto com sucção controlada. Foram executados 12 ensaios sob tensões normais líquidas e sucções mátricas diferentes, segundo o procedimento detalhado no capítulo 4.

A equalização de sucção foi realizada ora num dessecador, ora na câmara de compressão da prensa de cisalhamento. Quando se iniciou a

equalização da sucção no dessecador, a fase de adensamento durou de 24 a 48 horas. Esse tempo aproximou-se de 120 horas quando a equalização no dessecador foi executada somente na câmara de compressão. O tempo de equalização dependia da sucção mátrica que se pretendia alcançar, ocorrendo entrada ou saída de água no corpo de prova. Geralmente, quando o teor de umidade inicial correspondia a uma sucção menor que a aquela a ser atingida, ocorria entrada de água no solo. Em seguida procedia-se o cisalhamento da amostra a uma velocidade constante de 0,000975 mm/min.

Inicialmente, os resultados obtidos foram divididos em 3 séries com tensão normal líquida constante, conforme foi mostrado na Tabela 4.9. Em seguida, foram rearranjados em 4 séries de ensaios com a sucção constante. Uma breve análise dos resultados dos ensaios é apresentada no final deste sub-item. Os valores dos índices físicos iniciais, após a fase de adensamento e após a fase de cisalhamento das amostras ensaiadas estão apresentados na Tabela 6.2, Tabela 6.3 e Tabela 6.4, respectivamente.

		Pressões	aplicadas	Índices físicos iniciais					
Série	Ensaio	(σ-u _a) (kPa)	(u _a -u _w) (kPa)	γ _{nat} (kN/m³)	γ _d (kN/m³)	w _{real} (%)	е	S (%)	
	CDSC01	50	25	16,210	13,740	18,01	0,999	50,48	
1	CDSC02	50	50	13,890	11,940	16,34	1,300	35,17	
I	CDSC03	50	100	15,452	13,663	13,09	1,010	36,30	
	CDSC04	50	200	15,731	13,657	15,19	1,011	42,07	
	CDSC05(1)	100	25	15,341	13,726	11,76	1,000	32,91	
п	CDSC05(2)	100	25	15,159	14,554	4,15	0,820	13,67	
	CDSC06(1)	100	50	15,218	14,307	6,37	0,851	20,21	
	CDSC06(2)	100	50	15,102	14,543	3,87	0,821	12,72	
	CDSC07	100	100	15,918	14,477	9,95	0,897	31,06	
	CDSC08	100	200	15,513	14,272	8,70	0,856	27,44	
	CDSC09	200	25	15,258	14,176	7,64	0,868	23,74	
Ш	CDSC10(1)	200	50	15,108	13,982	8,05	0,964	23,39	
	CDSC10(2)	200	50	15,556	14,895	4,43	0,778	15,38	
	CDSC11	200	100	15,475	14,240	8,67	0,860	27,23	
	CDSC12	200	200	15,836	14,573	8,67	0,818	28,62	

Tabela 6.2 –	Indices	Físicos	Iniciais.
--------------	---------	---------	-----------

() número do ensaio

		Pressões	aplicadas	Índices físicos após adensamento					
Série	Ensaio	(σ-u _a) (kPa)	(u _a -u _w) (kPa)	γ _{nat} (kN/m³)	γ _d (kN/m³)	W _{calc} (%)	е	∆e/ (1+e₀)	
	CDSC01	50	25	17,220	13,460	27,93	0,881	0,059	
1	CDSC02	50	50	14,850	11,620	27,79	1,151	0,065	
I	CDSC03	50	100	16,890	14,700	14,90	0,839	0,085	
	CDSC04	50	200	17,481	15,424	13,34	0,809	0,100	
	CDSC05(1)	100	25	16,780	12,854	30,54	0,829	0,086	
	CDSC05(2)	100	25	16,462	13,649	20,61	0,676	0,079	
п	CDSC06(1)	100	50	21,659	17,710	22,30	0,301	0,297	
	CDSC06(2)	100	50	16,616	13,935	19,24	0,668	0,84	
	CDSC07	100	100	17,347	15,032	15,40	0,679	0,82	
	CDSC08	100	200	22,932	20,711	10,72	0,255	0,324	
	CDSC09	200	25	17,806	13,676	30,20	0,601	0,143	
111	CDSC10(1)	200	50	18,857	15,582	21,02	0,808	0,079	
	CDSC10(2)	200	50	16,410	13,426	22,23	0,467	0,175	
	CDSC11	200	100	17,254	15,422	11,89	0,668	0,103	
	CDSC12	200	200	18,335	16,956	8,13	0,570	0,136	

Tabela 6.3 – Índices Físicos após o adensamento.

() número do ensaio

Tabela 6.4 – Índices físicos após o cisalhamento.

		Pressões aplicadas		Índices físicos após cisalhamento						
Serie	Ensaio	(σ-u _a) (kPa)	(u _a -u _w) (kPa)	γ _{nat} (kN/m³)	γ _d (kN/m³)	w _{calc} (%)	w _{real} (%)	е		
	CDSC01	50	25	18,429	14,146	30,55	30,27	0,941		
	CDSC02	50	50	16,064	12,645	30,82	27,04	1,171		
I	CDSC03	50	100	18,197	15,319	16,11	18,78	0,792		
	CDSC04	50	200	20,469	17,770	15,03	15,19	0,545		
	CDSC05(1)	100	25	20,204	15,542	32,09	29,99	0,767		
	CDSC05(2)	100	25	23,325	18,811	22,53	24,00	0,408		
п	CDSC06(1)	100	50	24,845	20,546	25,04	20,92	0,289		
	CDSC06(2)	100	50	29,507	24,747	22,50	19,23	0,070		
	CDSC07	100	100	20,044	17,271	17,09	16,05	0,590		
	CDSC08	100	200	25,238	22,645	11,79	11,45	0,345		
	CDSC09	200	25	21,009	16,899	32,59	24,32	0,567		
III	CDSC10(1)	200	50	23,390	19,477	23,28	20,09	0,360		
	CDSC10(2)	200	50	17,676	14,408	22,72	22,68	0,906		
	CDSC11	200	100	25,018	21,718	15,20	15,20	0,220		
	CDSC12	200	200	22,483	20,055	8,64	12,10	0,321		

() número do ensaio

6.2.1 Ensaios com Tensão Normal Líquida Constante

Os ensaios de cisalhamento direto com sucção controlada foram divididos em 3 séries com tensão normal líquida constante. Neste tópico, estão apresentadas as curvas obtidas dos ensaios realizados e um sucinto comentário sobre os mesmos. Ressalta-se que durante alguns ensaios houve falta de energia no laboratório de Geotecnia e Meio Ambiente da PUC-Rio, o que impossibilitou a aquisição de dados em determinados períodos, gerando lacunas nas curvas plotadas a seguir. Isto ocorreu durante a execução dos ensaios:

- CDSC01: $(u_a-u_w) = 25 \text{ kPa} (\sigma_n u_a) = 50 \text{ kPa}$, na fase de cisalhamento;
- CDSC05(2): $(u_a-u_w) = 25$ kPa $(\sigma_n u_a) = 100$ kPa, na fase de cisalhamento;
- CDSC10(2): (u_a-u_w) = 50 kPa (σ_n u_a) = 200 kPa, na primeira fase;
- CDSC12: $(u_a-u_w) = 200 \text{ kPa} (\sigma_n u_a) = 200 \text{ kPa}$, na fase de cisalhamento;

6.2.1.1 Série I

A série 1 é composta de 4 ensaios, nos quais se manteve a tensão normal líquida (σ_n – u_a) aproximadamente em 50 kPa, enquanto foi variada a sucção mátrica em valores próximos a 25, 50, 100 e 200 kPa. Na Figura 6.2, estão apresentadas as curvas de deslocamento vertical (δ_v) e de variação de volume de água (ΔV_w) em função do tempo, associadas à fase de adensamento e equalização da sucção respectivamente. Da fase de cisalhamento foram obtidas as curvas de tensão cisalhante (τ), deslocamento vertical (δ_v) e variação volume de água (ΔV_w) *versus* deslocamento horizontal, mostradas na Figura 6.3.

Figura 6.2 – Curvas de deslocamento vertical e variação volumétrica em função do tempo (série I).

Figura 6.3 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal (Série I).

6.2.1.2 Série II

Na segunda série de ensaios, variou-se a sucção mátrica em valores próximos a 25, 50, 100 e 200 kPa, enquanto foi mantida a tensão normal líquida (σ_n-u_a) em 100 kPa aproximadamente. Dos quatro ensaios inicialmente propostos, foi necessário repetir 2, totalizando 6 ensaios realizados nessa série. Apresenta-se as curvas δ_v *vs.* tempo e ΔV_w *vs.* tempo na Figura 6.4 associadas à fase de adensamento. Na fase de cisalhamento, obtiveram-se as curva τ *vs.* δh , δ_v *vs.* δ_h e ΔV_w *vs.* δ_h , mostradas na Figura 6.5.

Figura 6.4 – Curvas de deslocamento vertical e variação volumétrica em função do tempo da série II (valores entre parênteses indicam o número do ensaio).

Figura 6.5 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal da série II (valores entre parênteses indicam o número do ensaio).

6.2.1.3 Série III

Na última série realizada (série 3), foram realizados cinco ensaios, sendo que um deles foi a repetição do ensaio com sucção mátrica igual a 100 kPa. Em todos os ensaios a tensão normal líquida foi, aproximadamente, 200 kPa e a sucção mátrica foi variada, valores próximos a 25, 50, 100 e 200 kPa. Na Figura 6.6, estão apresentadas as curvas de δ_v e de ΔV_w em função do tempo, referentes à fase de adensamento. Da fase de cisalhamento, foram obtidas as curva de τ , δ_v e ΔV_w em função do deslocamento horizontal, mostradas na Figura 6.7.

Figura 6.6 – Curvas de deslocamento vertical e variação volumétrica em função do tempo da série III (valores entre parênteses indicam o número do ensaio).

Figura 6.7 – Curvas de tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal da série III (valores entre parênteses indicam o número do ensaio).

6.2.1.4 Análise dos resultados obtidos

Como dito anteriormente, na fase inicial dos ensaios, ou seja, a equalização da sucção e adensamento, ocorreu a entrada ou saída de água nas amostras. Em alguns ensaios, observou-se uma maior variação de altura dos corpos de prova que em outros. Isso pode ser explicado pela presença de fraturas no solo. A equalização de sucção dependia, basicamente, da sucção mátrica inicial apresentadas pelos corpos de prova. Para a maioria dos ensaios, percebeu-se a entrada de água na amostra.

Na fase de cisalhamento registrou-se a variação do volume de água que entra ou sai da amostra. Com esses valores, foi calculado o teor de umidade ao final de cada ensaio. Em quase todos os ensaios, o valor obtido se mostrou similar àquele determinado como recomendado pela NBR 6457 (1986).

Observou-se um comportamento de enrijecimento das amostras durante o cisalhamento, uma vez que as mesmas aumentam a resistência à medida que se aumenta o deslocamento horizontal. Percebeu-se que em todos os ensaios ocorreu entrada de água nos corpos de prova durante o cisalhamento, notando-se que em alguns deles, inicialmente, houve saída de água.

Com os resultados obtidos, no próximo capítulo, fez-se tentativas de correlacioná-los com seus índices físicos e, também, as tensões aplicadas, isto é, tensão normal líquida e sucção mátrica. Obteve-se a envoltória tridimensional de resistência ao cisalhamento em função das variáveis de tensões supracitadas. Por fim, os resultados obtidos foram comparados com estimativas formuladas a partir da curva característica e com resultados encontrados na literatura técnica.

6.2.2 Comparação de ensaios com mesmo nível de sucção

As curvas obtidas da fase de cisalhamento foram reagrupadas mantendose a sucção mátrica constante variando a tensão normal líquida, de acordo com a Tabela 6.5. São mostradas apenas as curvas obtidas na fase de cisalhamento. É apresentada, também, uma análise sucinta dessas curvas.

Figura	Ensaio	(u _a -u _w) (kPa)	(σ-u _a) (kPa)
	CDSC01	25	50
Figura 6.8	CDSC05(1)	25	100
i igula 0.0	CDSC05(2)	25	100
	CDSC09	25	200
	CDSC02	50	50
	CDSC06(1)	50	100
Figura 6.9	CDSC06(2)	50	100
	CDSC10(1)	50	200
	CDSC10(2)	50	200
	CDSC03	100	50
Figura 6.10	CDSC07	100	100
	CDSC11	100	200
	CDSC04	200	50
Figura 6.11	CDSC08	200	100
	CDSC12	200	200

Tabela 6.5 – Apresentação dos resultados em função da tensão normal líquida aplicada.

() número do ensaio.

6.2.2.1 Sucção Mátrica = 25 kPa

Figura 6.8 – Curvas tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal dos ensaios com sucção mátrica de 25 kPa (valores entre parênteses indicam o número do ensaio)

6.2.2.2 Sucção Mátrica = 50 kPa

Figura 6.9 – Curvas tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal dos ensaios com sucção mátrica de 50 kPa (valores entre parênteses indicam o número do ensaio).

6.2.2.3 Sucção Mátrica = 100 kPa

Figura 6.10 – Curvas tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal dos ensaios com sucção mátrica de 100 kPa.

6.2.2.4 Sucção Mátrica = 200 kPa

Figura 6.11 – Curvas tensão cisalhante, deslocamento vertical e variação volumétrica em função do deslocamento horizontal dos ensaios com sucção mátrica de 200 kPa.

6.2.2.5 Análise dos resultados com mesmo nível de sucção mátrica

Em todos os ensaios as curvas de tensão cisalhante *versus* deslocamento horizontal aumentam com o acréscimo de deslocamento. Percebeu-se que a tensão cisalhante alcança valores maiores com aumento da tensão normal líquida. A variação de altura das amostras durante os ensaios não apresentou uma tendência com a variação de (σ -u_a). Posteriormente, são mostradas tentativas dessa correlação. Também não foi percebida uma relação entre a variação de volume de água nos corpos de prova e as diferentes tensões normais líquidas.